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SUMMARY 
In the numerical solutions of fluid flow problems in moving co-ordinates, an additional conservation 
equation, namely the space conservation law, has to  be solved simultaneously with the mass, momentum 
and energy conservation equations. In this paper a method of incorporating the space conservation law into 
a finite volume procedure is proposed and applied to a number of test cases. The results show that the 
method is efficient and produces accurate results for all grid velocities and time steps for which temporal 
accuracy suffices. It is also demonstrated, by analysis and test calculations, that not satisfying the space 
conservation law in a numerical solution procedure introduces errors in the form of artificial mass sources. 
These errors can be made negligible only by choosing a sufficiently small time step, which sometimes may be 
smaller than required by the temporal discretization accuracy. 
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1. INTRODUCTION 

In fluid flow calculations the use of moving co-ordinates is sometimes essential, e.g. in flows with 
moving boundaries. The solution of such problems is best accomplished via the conservation 
equations in a non-Eulerian co-ordinate frame. Owing to the movement of the co-ordinate 
system, an additional equation results which has to be satisfied simultaneously with the other 
conservation equations. This equation relates the change of the elementary control volume to the 
co-ordinate frame velocity and is hence called by Trulio and Trigger’ the ‘space conservation law’ 
(SCL). They seem to be the first to have included this equation together with the mass, 
momentum and energy transport equations in their ‘fundamental equations of motion’ for 
numerical solutions on moving meshes; they used it for one-dimensional flow calculations. 
However, the necessity of solving this equation simultaneously with the other conservation 
equations was not recognized until it was rediscovered by Thomas and Lombard2 and by 
DemirdiiC;3 Warsi4 also recognizes the SCL equation as ’the fundamental equation for non- 
steady co-ordinates’. The only applications of the SCL known to the authors are those of Trulio 
and Trigger’ and of Thomas and Lombard,2 who used it in conjunction with a finite difference 
solution method. 
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A number of flow calculations on moving meshes are reported in the literature. However, none 
of them, apart from those mentioned above, uses the SCL. In most cases either the authors were 
fortunate that their choice of the grid velocity satisfied the SCL (e.g. Gosman and Watkins,’ 
Gosman and Johns6) or the error coming from the non-satisfaction of the SCL was attributed to 
other sources. For instance, Viviand and Ghazzi7 encountered oscillations and instabilities in 
their finite difference calculations. In order to overcome these problems, they abandoned the 
conservative in favour of a non-conservative form of the equations which does not contain the 
Jacobian. Similarly, Amsden et aL8 reported that their finite volume calculations were excessively 
sensitive to the volume changes for subsonic flows and difficulties were encountered in the 
pressure iterations. 

In the next section we discuss the importance of the space conservation law in numerical 
calculations with moving grids. By employing finite volume (FV) method and fully implicit 
temporal differencing, we propose in Section 3 a way of calculating the grid velocities so that the 
SCL is automatically satisfied. On test calculations reported in Section 4 we demonstrate the 
effects of errors introduced by not satisfying the SCL. Finally the conclusions from this exercise 
are drawn up in Section 5. 

2. SPACE CONSERVATION LAW 

The set of equations describing conservation of space, mass, momentum and energy in a moving 
co-ordinate frame reads respectively334 

i a  

&at 
--(&pv)+div(pv,v-T)=S,:, 

( 1 4  
i a  

--(&P+) + div (Pvr4 -q)= ~ 4 .  
&at 

Here & is the determinant of the metric tensor, v is the velocity vector, v,=v-v,  is the fluid 
velocity relative to the moving co-ordinate system (grid), vg is the grid velocity and 4 is a scalar 
quantity (temperature, concentration, etc.). T and q are the stress tensor and the scalar flux vector 
respectively given by 

T= - ( p + $ p  div v)I + 2pD, 

q = r+ grad 4- 
(2a) 
(2b) 

where p is the pressure, ,u is the dynamic viscosity, I is the unit tensor, D is the deformation rate 
tensor (the symmetric part of the velocity gradient) and r4 is thLe diffusivity of 4. The terms on the 
right-hand sides of equations (1) represent sources or sinks. 

In order to demonstrate the necessity of satisfying the SCL, let us consider incompressible fluid 
(p=constant). In this case the mass conservation equation ( l b )  can be rewritten as 

(3) 
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The bracketed terms in equation (3) represent the left-hand side of the SCL equation (la) and 
must be zero. Thus the mass conservation equation for the incompressible fluid reads 

div v = 0. (4) 
If the SCL is not satisfied by the nhmerical solution procedure, artificial mass sources are 
generated which may cause the solution to be greatly in error. This will be demonstrated later by 
the test calculations performed for a stationary fluid and moving grids. 

Equation (la) or equivalently equation (3) could be used to calculate the change in cell volume, 
6 V, for a given grid velocity vg. However, this approach is not practical since the grid velocity is 
generally not available. Moreover, in most practical applications, for example in-cylinder flow 
and flow around moving valves, the grid position at each time level is prescribed and the change 
in the cell volume as well as the surface vectors are given (known) quantities. 

Unlike Thomas and Lombard,2 who solue equation (la) numerically together with the other 
conservation equations, we propose to calculate the grid velocities from the known grid positions 
in a manner consistent with the discretization of the other conservation equations, so that the 
SCL is always exactly satisfied. This will be outlined in the next section. Attention will be paid 
only to the SCL; discretization of other conservation equations is described in detail in PeriLg 
A fully implicit scheme is employed, for reasons discussed by Demirdiib3, but the practice 
proposed will apply to other kinds of temporal differencing as well. 

3. DEFINITION OF THE GRID VELOCITIES 

When equation (la) is integrated over an arbitrary control volume (cell) and time, with the aid of 
the Gauss' divergence theorem, one gets 

P - ( V " -  I V 0 ) = f s  v;dS", 
At (5 )  

where 6V= V"-  V" is the change of the cell volume during At, S is the surface of the control 
volume, dS is the surface vector and superscripts 'n' and '0' denote the new and old time levels 
respectively. 

For Cartesian velocity components and an arbitrary quadrilateral control volume (see 
Figure l), equation (5) becomes 

1 
- (V"-  At V o ) = C v g i - S 1 ,  i i=e, w, n, s, 

where vgi=(ug, u , ) ~  is the cell face velocity and Si=(Sx, S,)i is the cell face vector. 
In order to satisfy the SCL, we define the grid velocities so that the rate of change of the cell 

volume obtained from the SCL, (6Vsc,)/At, is exactly equal to its actual (geometrical) rate of 
change, (6 VG)/At, i.e. 

(7) 

This will be applied first to a simple one-dimensional case and then to control volumes of 
gradually increasing geometrical complexity. 

6 v, = s VSCL. 

One-dimensional grid 

Figure 2) 
In one-dimensional case the natural definition of the cell face (average) velocities is (see 
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i 

Figure 1 .  Control volume afid labelling scheme 

Figure 2. Control volume in one-dimensional moving grid at two time levels 

This definition satisfies the corresponding SCL, 

since 

i.e. 6 vG/At = 6 VSCL/At. By convention, the increments like ,6xe are calculated as the difference 
between the new and the old positions. 

Most finite volume calculations with moving grids have been done on two-dimensional 
Cartesian grids with only one set of moving, grid They all used (explicitly or 
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implicitly) equation (8) for the grid velocity. Since this is a one-dimensional case as far as the grid 
movement is concerned, they did not encounter problems related to the SCL. This is probably the 
reason why the significance of the SCL was not recognized. 

Two-dimensional Cartesian grid 

Figure 5 )  
In the case of a two-dimensional Cartesian grid the discretized SCL equation reads (see 

The obvious way of calculating the grid velocities is to use expressions like (8), which may 
represent the exact velocity of the grid line. However, if both sets of grid lines move, this definition 
of grid velocity will not, in general, satisfy the SCL. For the finite volume procedure considered 
here, the error introduced is 

The 'missing' volume S V ,  is shown in Figure 3 as a shaded area for a few possible situations. 
p 6 V,/At represents an artificial mass source in the continuity equation (3) and, if it is significant 

compared with the actual change p 6 V/At, erroneous results will be obtained, i.e. mass conser- 
vation will not be assured. In other words, if the grid velocities are calculated from equation (8), 
then one has to ensure that the ratio 6 V,/S V is small: 

From equation (14) it is obvious that E is equal to zero, i.e. no error is introduced, when either 
(i) one set of grid lines does not move or (ii) all members of one set of grid lines move at the same 
velocity. In any other case E is not zero but is directly proportional to the time step, grid velocities 
and grid spacing. For fixed boundary movement and time step At, as the grid is refined E will 
remain unchanged. Thus the only way to reduce E for given grid velocities is to reduce the time 
step size At. This is schematically demonstrated in Figure 4. Therefore the non-satisfying of the 
SCL imposes an additional constraint on the time step size, which in some cases may be severer 
than the temporal discretization accuracy constraint. This will be demonstrated on test calcu- 
lations in the next section. 

If the rate of change of the cell volume is decomposed into four terms corresponding to the four 

------- 

-----_- - 
new new 

Figure 3. Possible changes of a control volume in time At 
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T 

f i n d  final 

Figure 4. Reductlon of SCL error by reducing the time step 

t--- 1 

Figure 5. Control volume in two-dimensional moving Cartesian grid at two time levels 

then the following definition of the grid velocity components, 

Ay"+Ay" 6xe  
l&=--- 

2Ay" At ' 

Ax' + Ax" hy,  
vg,n=-- ~ 

2Ax" A t '  

guarantees satisfaction of the corresponding SCL (equation ( 12)) exactly, since 

(6VJG Ay"+Ay" 6xe --_____ - 
At 2 At ' 

Ay" + Ay" 6xe 
2Ay" At 

-- -- Ay", (6 Ve ~ S C L  - 
Ug,eAYn= At 

i.e. (6 Ve),/At =(6 V,),,,/At. 
Clearly equation (16) reduces to equation (8) if Ay"=Ay", i.e. if 6 y , = d y ,  (see Figure 5). Note, 

however, that equations (16) are not the only way of defining grid velocities which automatically 
satisfy the SCL; other, less obvious, definitions are also possible, but this choice seems the simplest. 

Two-dimensional arbitrary grid 

In the case of an arbitrary two-dimensional moving grid (see Figure 6) the control volumes at 
each time level are quadrilaterals defined by four vertices, which are connected by straight lines. 
The surface vectors and grid velocities have the following components, e.g. 
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Figure 6. Control volume in two-dimensional moving general grid at two time levels 

where dxe, dye, etc. are the components of &re, etc. (see Figure 6), e.g. 

&re =r:-rZ=(dx,, d y , ) = ( x ~ - x ~ ,  y: -y:), 
6rn = r: -rOn =(6xn, dy,)=(x; - x;, y: -y;). 

The corresponding SCL equation (6) can be rewritten in this case as 

6V d ~ + s v w + b v n + s ~  
= (vg + (vg . S " ) ,  + (vg .Sn)n + (vg . sys. - -_ 

At At 

It will now be shown, using as an example the 'e' cell face, that the grid velocities defined by 
equation (20) do satisfy this SCL equation. 

The area swept by the 'e' cell face during time At is 

-=- (6Ve)G (&re x de), 
At At 

where (see Figure 6 )  

de=t(x:e+XOne-X~e-X~e, Y:e+YOne-Y:e-Yie) (24) 

and where (x:~, yre) are Cartesian co-ordinates of the vertex sen, for example. It follows from 
equation (23) that 

C ~ X ~ ( Y  One + Y :e- Y L-  Y !e)-dye(xOne +x:e -xL-x;e)l. (25) ( S v e ) ,  1 -=- 
At 2At 
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On the other hand, from the SCL (equation (22)) we have 

and from equations (19) and (20) it follows further that 

Equations (25) and (27) are identical, implying that the grid velocities from equations (20) satisfy 
the SCL. Note again that equations (20) are not unique, but rather the most logical way of 
calculating grid velocities such that they satisfy the SCL. 

The methodology presented above can be readily extended to three-dimensional grids, both 
Cartesian and arbitrary. For the sake of brevity, this exercise is omitted here. 

An alternative way of incorporating the SCL in finite volume methods, which avoids the need 
to explicitly calculate the grid velocities and thus may especially be attractive in three-dimen- 
sional applications, is presented in the Appendix. 

4. TESTING OF THE METHOD 

The simplest test case is the solution of the mass and momentum conservation equations for a 
stationary incompressible fluid on a moving grid. With the initial condition set to the exact field 
(zero velocity and pressure), no fluid motion should result when the SCL is satisfied in the 
calculations. In order to prove that the proposed method of calculating the grid velocities does, 
and also to examine the errors introduced by using grid velocities which do not satisfy the SCL, 
several test cases were set up. 

In Case 1 an orthogonal Cartesian and in Case 2 a non-orthogonal grid of 10 x 10 control 
volumes (CV) is caused to move from a non-uniform initial position to a uniformly spaced grid at 
the time T =  1 s (see Figures 7 and 8). The grid movement is assumed linear, i.e. each grid line has 
constant (but different) velocity, except the boundary and centre lines which are fixed. The 
problem is thus symmetric, the grid velocities being positive on one and negative on the other side 
of the centre line. 

The initial conditions at t = 0 were zero velocities and pressure all over the field, the fluid having 
a density of 1 and a viscosity of 0.01. The dimensions of the solution domain were 10 and 2 in the 
x, y directions respectively, resulting in maximum grid vellocities u ~ , , , ~ ~ =  0 9  and u ~ , , , ~ ~ =  0.18. 

The problem was solved by a finite volume p rocedu~e~  which incorporates the SIMPLE 
algorithm for velocity-pressure coupling.' Under-relaxati,on factors of 0.8 for velocities and 0.2 
for pressure were used in all calculations (see Perik et ~ 1 . ' ~  for details). For each case two subcases 
were run: one with grid velocities specified according to equation (20) and one employing 
equation (8). Calculations were performed with two time steps: At* = At/T= 1 (i.e. the grid moves 
from its initial to its final position in one time step) and At* =0.2 (the same grid movement occurs 
over five time steps). 

When the grid velocities are calculated according to equation (20), the exact solution is 
obtained in one iteration in both cases and both time steps. No numerical errors are introduced 
when the grid velocities satisfy the SCL, and thus the time step may be as large as allowed by the 
temporal discretization error. (In the above case an arbitrarily large time step may be used, since 
the solution does not change with time.) 



FINITE VOLUME CALCULATIONS 1045 

I 

Figure 7. Case 1. initial (a) and final (b) grid, predicted velocity vectors (c) and pressure contours (d) at r =  T, obtained 
using At * = 1 
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- = 0.109 m/s 

Figure 8. Case 2. initial (a) and final (b) grid, predicted velocity vectors (c) and pressure contours (d) at t = T, obtained 
using Ar* = 1 

When, however, the grid velocities are calculated accordiqg to equation (8) (which are the exact 
grid velocities), the exact initial solution is destroyed by the artificial mass sources introduced. 
The maximum errors in u, v and p at the end of each time step are shown in Tables I and I1 for 
these two cases respectively. The resulting velocity vectors and pressure contours at t = T (grid in 
its final position) are presented in Figures 7 and 8. 
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Table I. Maximum errors in Case 1 

At*= 1 At*=0.2 

t 1 .o 0.2 0.4 0 6  0.8 1 .o 
"ma, 0.0196 00054 0.0039 0.0033 0.0034 00039 
Urnin -0.0196 - 0.0054 - 0.0039 - 0.0033 - 0.0034 -00039 

vm, 0.1009 0.026 1 0.0243 0.0218 0.0196 0021 1 
Vmin -0.1009 - 0'0261 - 0.0243 - 0.02 18 -0.0196 -00211 

Pmax 0.0467 00009 00020 09039 0.0052 00067 
Pmin -0'0765 -00840 - 0.0085 -00046 - 0.0043 -00045 

Table 11. Maximum errors in Case 2 

At*=l At* = 0.2 

t 1 .o 0.2 0.4 0.6 0.8 1 .o 
Umax 0.0426 0.0188 00187 0.0165 0.0142 0.0122 
Umin - 0.0426 -0.0188 -00187 - 0.0 165 -00142 -00122 

Umax 0.1063 00268 00258 0.0235 0-02 14 00226 
"min -01063 - 0'0268 -00258 - 0.0235 - 0.02 14 - 00226 

Pmax 0.06 15 O~OOOO 00049 00049 0.0064 00089 
Pmin -0.1098 - 0.1 545 - 00229 - 00088 -00078 - 00079 

Tables I and I1 show that the maximum error (in this case for u) is reduced by a factor of 
approximately five when the time step is reduced by this factor. This is consistent with the error 
analysis presented in the previous section. For the non-orthogonal grid the errors in u were about 
the same, and those in u and p about twice as large as for the orthogonal grid. 

Figures 7 and 8 indicate that, as a result of not satisfying the SCL, the solution process 
converges to an unrealistic flow field (between 30 and 10 iterations per time step were needed). 
The errors are largest in regions where largest changes in control volume size occur, as expected. 
When the time step is reduced, the errors are also reduced in magnitude, but the pattern remains 
the same. 

Cases 3,4 and 5 involve calculations with the 'exact' grid velocities (equation (8)) on 20 x 20 CV 
grids. In Case 3 the grid covers the same domain as in Case 1, but Ax and Ay are approximately 
halved. The time interval T is the same (1 s), so the velocities of corresponding grid lines are also 
the same. However, since there are more grid lines than in Case 1, the differences in neighbour 
grid line velocities are about halved. According to expression (14), one should expect errors of the 
same order as in Case 1 to occur (At the same, Axi and Aug halved). Table I11 shows- errors for 
three different time steps At*: 1,0.5 and 01. For the same time step the errors are nearly equal to 
those presented in Table I. Reduction of the time step again resulted in a corresponding reduction 
of the error. 
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Table 111. Maximum errors in Case 3 
~~ 

At* = 1 At* ~ 0 . 5  At* =0.1 

t 1 .o 0.5 1 .o 01 0 5  1 .o 

Umax 0.0242 0.0126 0.01 11 OW56 0.0037 0.0028 
Umin - 0.0242 -0.0126 - 0.01 11 - 0.0056 - 0.0037 - 0.0028 

Vmax 0.1064 0.0693 0.0535 0.0176 0.0132 0.0107 
Urnin - 0.1064 - 0.0693 -0.0535 - 0.0176 - 0.01 32 -00107 

Pmax 00452 00004 001 65 0.0016 0.0024 00034 
Pmin -00802 -0.0814 -001.16 - 0.1 1 18 - 0.0026 - 0.0020 

Case 4 uses the same grid as Case 3, but with twice the grid velocities: the time T is reduced to 
0 5  s. Thus the velocity differences Aug in equation (14) are doubled; however, At is halved, so E is 
unchanged, i.e. the error relative to  grid velocity is the same. However, 6 V . A t  is twice that of the 
previous case, so doubled absolute errors are expected. Table IV shows that the results accord 
with these expectations. The velocity vectors and pressure contours show the same patterns (but 
with magnitudes twice as high) as already seen in Figure 7 for Case 1. 

The same effect is achieved in Case 5 by leaving the time interval the same as in Case 3 and 
doubling the size of the solution domain, so that the grid velocities are again doubled. The results 
of calculations are presented in Table V, and they are indeed almost identical to those of 
Table IV. 

5. CONCLUSIONS 

The need to satisfy the SCL, which relates the rate of change of the control volume to the velocity 
of its boundary, in fluid flow calculations with moving grids has been demonstrated. It is shown 
that for incompressible fluid flow the SCL is essential to mass conservation; and not satisfying it 
means the introduction of artificial mass sources. 

In order to satisfy the SCL exactly in finite volume calculations, it is sufficient to calculate the 
grid velocities from the known new and old time level locations of grid lines in an appropriate 

Table IV. Maximum errors in Case 4 

At*=l Atak = 0.2 

t 0.5 0.1 0-2 0.3 0.4 0 5  
~ ~ ~~~~~ 

Urnax 0.0510 0.0177 0.0143 0.01 14 0.009 3 00089 
Umin - 0'0510 -00177 - 0.0 143 - 0.0 1 14 - 0.0093 - 0.0089 

Vmax 0.2130 00669 0.0584 0,051 1 0,0454 00429 
omin - 0.21 30 - 0.0669 -0.0584 -0.0511 - 0.0454 - 0.0429 

Pmax 0.1950 09015 0.0249 0,0247 0.0246 0029 1 
Pmin -0.2760 -0.3890 -0.0163 -0,0102 - 0.0089 - 0.0092 
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Table V. Maximum errors in Case 5 

A t * = l  At* = 0.2 

t 1 .o 0.2 0.4 0.6 0.8 1 .o 

umax 0.0564 00171 0.0139 0.01 10 00089 0.0090 
- 0.0090 Urnin -0.0564 -00171 -0.0139 -0.0110 - 00089 

umax 0.2139 00671 0.0588 0.05 15 00458 0.0429 
Vmin - 0.2 139 - 00671 - 0.0588 - 0.0515 - 00458 - 0.0429 

Pmax 0.2048 O.OoO8 0.0296 0.0278 0.0270 0.0302 
Pmin -0.2505 - 0.3764 - 0.0092 -0.0053 -00057 - 0.0067 

way. One simple (but not the only possible) way of calculating the grid velocities for two- 
dimensional Cartesian and general non-orthogonal grids was presented which fulfils the above 
requirement. Test calculations performed on stagnant fluids and various moving grids verified 
that the proposed method of grid velocity calculation is correct. 

It is also demonstrated on the same test cases that the grid velocities deduced from the law of 
their motion do not satisfy the SCL and introduce serious errors. The errors are shown to depend 
on the grid velocities, time step and grid spacing. For problems in which the grid velocities are 
dictated by the movement of boundaries, the only way of reducing the error is to reduce the time 
step, since grid refinement does not affect the SCL error. Thus not satisfying the SCL implies an 
additional constraint on the time step size, which may be severer than the temporal discretization 
accuracy requirement. When, on the other hand, the grid velocities satisfy the SCL, no additional 
error is introduced and accurate results are obtained for all time steps consistent with temporal 
accuracy. 
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APPENDIX 

In this Appendix an alternative way of incorporating the SCL into a finite volume method for the 
solution of fluid flow and heat transfer conservation equations is presented. 

The integral form of the SCL for an arbitrary control volume (see Figure 1) for a fully implicit 
time differencing scheme is given by equation (6): 

6V 
At i 
-=Cvgi.S:, i=e, w, n, s. 

The total rate of change of the control volume may be decomposed in the following way (see 
Figure 5 or 6 for example): 

-=- 
At At ' 
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where each component is 
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6 vi 
~ = vgi * s;. 
At 

The convection term in the conservation equation for an arbitrary variable $ (where $ stands for 
p, u, u or 4, cf. equations (1)) may be discretized as (cf. equation (6) )  

i i 

The rate of change of the cell volume is calculated from the known grid positions (cf. equations 
(17) and (23)) ,  i.e. 

i = e, w, n, s. 6Vi - (6Vi)G 
At At ’ 

This approach is equivalent to that presented in Section 3, since the proposed method of 
calculating the grid velocities stems from the same requirement. However, it may be more 
convenient since it does not require definition of the grid velocities. This applies especially to 
threeLdimensiona1 cases, where at each cell face three components of the grid velocity would have 
to be calculated, as opposed to the calculation of a single rate of change of the cell volume in 
equation (31). 
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